
@ 2023 CODEMIND Corporation. All rights reserved.

1

COYOTE C++
The State of the Art in White-Box Automated Testing

CODEMIND Corporation

Intelligent Unit Testing with COYOTE

Bill Gates once said, "we have as many testers as we

have developers. And testers spend all their time

testing, and developers spend half their time testing.

We're more of a testing, a quality software

organization than we're a software organization."

This quote captures the growing significance of

testing in software development and the need for

efficient testing methodologies. In today's software

landscape, where complexity and software size

continue to increase, testing plays a critical role in

ensuring quality and reliability.

Traditional testing approaches often rely heavily on

manual efforts, consuming valuable time and

resources. However, the rise of safety-critical

software and the demand for rigorous testing have

underscored the importance of automation in the

testing process. Pure automated testing has become

a necessity, eliminating the need for manual tasks and

enabling testing teams to focus on core development

activities.

In this paper, we introduce COYOTE, the advanced

intelligent tool specifically designed for white-box

unit testing of C/C++ programs. By leveraging the

power of automation, COYOTE revolutionizes the

testing landscape, offering a seamless transition to

pure automated testing. This paper explores the

remarkable capabilities of COYOTE and demonstrates

how it can maximize testing efficiency, productivity,

and code quality.

The Growing Need for Automated

Testing

Traditionally, black-box testing has been

predominantly used for integration testing and

system testing, accounting for approximately 30% of

the total testing field. On the other hand, white-box

testing, which primarily focuses on unit testing, one

of the most rigorous and fundamental testing

practices in the field of software development,

comprises nearly 70% of the testing efforts. While

black-box testing can be performed with a focus on

the external behavior of the software and is generally

easy to conduct, white-box testing often requires a

significant investment of human resources and costs

since white-box testing’s deeper inspection of the

internal workings necessitates a more substantial

investment of human resources, specialized skills,

and associated costs.

Fortunately, with the introduction of automated

testing, there is an opportunity to remarkably reduce

human efforts. COYOTE, our advanced intelligent tool

for white-box unit testing, addresses this challenge by

streamlining the testing process and maximizing

efficiency. By automating test case generation and

test code preparation, COYOTE significantly reduces

the manual effort and associated costs, making

white-box unit testing more accessible and cost-

effective. This is a completely different dimension of

automation than what other tools have tried before.

 Figure 1. Testing landscape

@ 2023 CODEMIND Corporation. All rights reserved.

2

Harnessing the Unmatched Power of

COYOTE

COYOTE is a powerful tool that revolutionizes white-

box unit testing by leveraging advanced technologies

such as symbolic execution and automated test case

generation. In this section, we explore how COYOTE

seamlessly integrates into existing workflows,

simplifying the testing process and achieving

unprecedented code coverage.

Technical Overview of COYOTE

COYOTE employs symbolic execution, a innovative

technique that allows it to explore different code

paths and systematically generate test cases. By

representing program inputs symbolically, COYOTE

can analyze multiple execution paths simultaneously,

uncovering potential vulnerabilities and ensuring

thorough software testing.

Manual Testing Challenges and the Need for

Automation

In manual white-box testing, there are indeed

significant tasks involved. It requires a deep

understanding of the internal structure and workings

of the source code. Test cases need to be written for

each function, and test harnesses such as drivers and

stubs implemented as functions must be developed.

The tests are then executed, and based on the results,

additional coding is done to cover any uncovered

functions. Considering the various possible scenarios

for a function, it becomes increasingly complex to

contemplate all possible combinations of inputs. This

process needs to be repeated regularly, often on a

daily basis.

In an ideal software development context, the goal is

to have automated testing that eliminates the manual

effort of writing test cases for each function and

developing drivers and stubs. The vision is to simplify

the process by generating test cases and code directly

from the source code being tested, with a simple click.

This intelligent approach would ensure

comprehensive coverage of the software. However,

despite this ideal vision, such advanced technology is

not yet a reality.

While we haven't reached the absolute ideal level of

fully automated testing, significant progress has been

made towards achieving it. We are excited to

announce that our COYOTE technology has brought

us remarkably close to this goal. With COYOTE, we

have achieved the highest level of automation

currently available in the industry. Unlike previous

attempts that have been around for a long time, our

technology has successfully achieved this

unprecedented level of automation, which is a

significant accomplishment.

Simplifying Testing with COYOTE

With COYOTE, the generation of test cases and the

development of test harnesses, such as driver and

stub code, are seamlessly performed behind the

scenes. Users simply need to review the analyzed

results provided by COYOTE and make any necessary

adjustments or modifications to settings or code. This

level of automation empowers users to focus their

efforts on reviewing and refining the testing process

Figure 2. Manual approach Figure 3. Ideal automated approach

@ 2023 CODEMIND Corporation. All rights reserved.

3

rather than spending extensive time on manual tasks.

By leveraging COYOTE's capabilities, developers and

testers can achieve a substantial increase in code

coverage, reaching levels of 90% or higher. This

surpasses what can typically be achieved through

manual testing alone. COYOTE's automation enables

thorough exploration of code paths, ensuring

comprehensive testing of critical functionalities. As a

result, users can have confidence in the quality and

reliability of their software while optimizing their

testing efforts.

Achieving Unprecedented Code Coverage

Practically, achieving 100% code coverage through

white-box testing is often not feasible due to several

reasons in manual or automated mode. Unreachable

code, which refers to portions of the code that are not

executed under normal circumstances, may not be

covered during testing. Time and resource constraints

play a role as exhaustive testing efforts require

considerable time and resources, especially for large

and complex software systems. Non-deterministic

behavior of certain components adds difficulty to

precise testing, as their output or behavior cannot be

reliably predicted. Additionally, the presence of

external dependencies, such as libraries or APIs,

introduces challenges in achieving full coverage of

code interacting with these components.

COYOTE's advanced algorithms and intelligent test

case generation techniques enable it to achieve

exceptional code coverage. In tests conducted at the

prestigious KAIST Research Center, COYOTE achieved

an impressive 92% statement coverage and 87%

branch coverage. These results surpass the

capabilities of other existing tools in the field of

automated white-box testing. With COYOTE,

organizations can gain unparalleled confidence in the

quality and reliability of their software.

While striving for high code coverage is important in

white-box testing, it is crucial to consider these

practical limitations and prioritize testing efforts to

ensure thorough coverage of critical components and

functionalities. Automated testing tools can help in

achieving effective coverage, even if complete

coverage is not feasible.

Figure 5. Table of White box testing results for ‘B’ automated software testing tool. Adapted from Performance and

Functionality Evaluation of White-box Software Testing Tools, Part 2, 2023, CSRC Weblog. https://csrc.kaist.ac.kr/blog/

2023/01/25/performance-and-functionality-evaluation-of-white-box-software-testing-tools-part-2/.

Figure 4. COYOTE approach

https://csrc.kaist.ac.kr/blog/2023/01/25/performance-and-functionality-evaluation-of-white-box-software-testing-tools-part-2/
https://csrc.kaist.ac.kr/blog/2023/01/25/performance-and-functionality-evaluation-of-white-box-software-testing-tools-part-2/

@ 2023 CODEMIND Corporation. All rights reserved.

4

Empowering Software Development

By leveraging COYOTE for white-box unit testing,

developers can allocate more time and expertise to

critical aspects of software development. The

seamless integration of COYOTE into existing

workflows enhances productivity and code quality,

while the advanced symbolic execution and

automated test case generation capabilities ensure

thorough testing and the identification of potential

issues.

Realizing Tangible Benefits and

Achieving Excellence in Software

Development

COYOTE excels in white-box unit testing for C/C++

programs, streamlining the development process by

automating tasks such as code comprehension, test

case creation, and harness preparation. This powerful

tool allows developers to focus on critical aspects of

software development, improving efficiency and

productivity.

One of COYOTE's notable strengths lies in its

remarkable ability to enhance test coverage and

minimize defects. One of the biggest automotive

companies in Korea has witnessed substantial

productivity gains by integrating COYOTE into their

testing labs. COYOTE's intelligent testing technology

has led to ten-fold improvements compared to

existing tools in the market. The company has

achieved exceptional test coverage ranging from 80%

to 90% without coding, surpassing the limitations of

traditional tools struggling to exceed 10% to 20%.

COYOTE's advanced features address gaps in

automated testing, ensuring comprehensive scrutiny

of critical functionalities.

Moreover, COYOTE's safety focus makes it an ideal

solution for industries adhering to rigorous standards.

By employing COYOTE, organizations can ensure

compliance with the demanding ISO 26262 standard

for automobile development. The combination of

higher code coverage and automated testing

capabilities provided by COYOTE offers automotive

companies a reliable and efficient means of

guaranteeing software safety and compliance.

COYOTE's versatility extends beyond the automotive

industry. Efforts are underway to introduce COYOTE

to other sectors such as national defense, aviation,

and rail. Its advanced features and capabilities make

it a versatile tool that can address the testing needs

of various domains, elevating productivity, and

software quality across industries.

In conclusion, COYOTE revolutionizes white-box unit

testing, enabling developers to achieve higher test

coverage, ensure safety compliance, and enhance

productivity. The practical use cases and tangible

benefits of COYOTE have been witnessed in the

automotive industry, with substantial

improvements in test coverage and defect

reduction. As COYOTE continues to make waves,

expanding its presence across industries, it

remains a powerful tool that empowers software

development teams to deliver reliable and high-

quality software. Embrace the power of COYOTE in

your software development workflow to harness

the benefits of automated testing and elevate

your development processes to new heights.

Figure 6. Productivity improvements

	Intelligent Unit Testing with COYOTE
	The Growing Need for Automated Testing
	Harnessing the Unmatched Power of COYOTE
	Technical Overview of COYOTE
	Manual Testing Challenges and the Need for Automation
	Achieving Unprecedented Code Coverage
	Empowering Software Development

	Realizing Tangible Benefits and Achieving Excellence in Software Development

